Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria.

نویسندگان

  • Brian D Fink
  • Krzysztof J Reszka
  • Judy A Herlein
  • Mary M Mathahs
  • William I Sivitz
چکیده

Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels.

The endothelium is relatively independent of the mitochondrial energy supply, but mitochondria-derived ROS may play an important role in the development of many cardiovascular diseases. Energy-dissipating uncoupling proteins (UCPs) mediate free fatty acid-activated, purine nucleotide-inhibited proton conductance (uncoupling) in the inner mitochondrial membrane. We have described a functional ch...

متن کامل

Uncoupling protein 2 impacts endothelial phenotype via p53-mediated control of mitochondrial dynamics.

RATIONALE Mitochondria, although required for cellular ATP production, are also known to have other important functions that may include modulating cellular responses to environmental stimuli. However, the mechanisms whereby mitochondria impact cellular phenotype are not yet clear. OBJECTIVE To determine how mitochondria impact endothelial cell function. METHODS AND RESULTS We report here t...

متن کامل

Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2.

In mammalian brown adipose tissue, thermogenesis is explained by uncoupling mitochondrial respiration from ATP synthesis. Uncoupling protein-1 (UCP1) is responsible for this uncoupled state, because it allows proton re-entry into the matrix and thus dissipates the proton gradient generated by the respiratory chain. Proton transport by UCP1 is regulated negatively by nucleotides and positively b...

متن کامل

Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. ...

متن کامل

The Role of Uncoupling Proteins in Diabetes Mellitus

Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 288 1  شماره 

صفحات  -

تاریخ انتشار 2005